

D2.3 SELFIE Helper final release

Document Control Page

Project Acronym SHERPA

Project Full Title SELFIE HElpeR & Pedagogical innovation Assistant

Project Number 612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD

Funding Sheme Erasmus+ KA3 Support for Policy Reform EACEA 36/2018

Project Coordinator AETMA Lab of IHU (Greece)

Project Start Date /

Duration
01-01-2020 / 24+6 Months

WP/Result WP2 / D2.3

Title SELFIE Helper final release

Result type Report and Open Source Code

Lead Partner AETMA Lab of IHU (Greece)

Due date 31 May, 2022 (M29)

Submission date 31 May, 2022

Abstract

This report describes and provide the SELFIE Helper KB and Chatbot

along with the CBR Inference engine at their final released version

after the pilot evaluation.

Author(s) AETMA Lab of IHU (Greece)

Contributor(s) All partners

Reviewer(s)

Dissemination level
Restricted to other program participants (including Commission
services and project reviewers)

Revision and History Chart

Version Date Modified by Comments

V1 1 May 2022 AETMA V1 with introductory content was created

V2 18 May 2022
JYU, TLU,

GFOSS
Input on various parts of the document

V3 25 May 2022
AETMA, JYU,

TLU, GFOSS
Various changes and amendments were made

V4 28 May 2022 AETMA V4 posted for review

V5 30 May 2022 AETMA Final report

Disclaimer:

"The European Commission support for the production of this publication does not constitute

endorsement of the contents which reflects the views only of the authors, and the Commission cannot be

held responsible for any use which may be made of the information contained therein"

D2.3. Final Release of SELFIE Helper

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 2

Executive Summary

SELFIE HElpeR & Pedagogical innovation Assistant (SHERPA) is a two-year Erasmus+ ΚΑ3

project with a mission to enhance innovation in schools by supporting self-assessment

processes for making better use of digital technology in teaching and learning.

The SELFIE Helper is consisted by Knowledge Base (KB) and the Chatbot which are some of

the most critical elements of the project. The implementation of these components is part of the

Work-Package 2.

This document presents the SELFIE Helper final release (using data derived from T2.7)

consisting of SELFIE Helper KΒ (using data derived from T2.2) and the Chatbot (using data

derived from T2.4) and is developed as the third deliverable of the WP2 (WP2-D2.3.) of the

SHERPA project of Erasmus+ EACEA/36/2018. In particular, this report presents the Chatbot

interface, the Cased Based Reasoning (CBR) Inference engine which is part of the chatbot

backend mechanism, the SELFIE Helper KB and the Backend Management System of the KB.

It describes their functionality and provides their source code and the appropriate software

prototypes.

These 3 modules will allow educators to make questions through the provided Chatbot interface

and automatically retrieve appropriate feedback. The CBR Inference Engine will retrieve these

questions as input from the Chatbot interface, it will contact the SELFIE Helper KB to find the

most related set of question-answer and it will return a proper response for the user that will be

provided through the Chatbot interface. In addition, special care has been taken for SELFIE

experts in order to allow them to manage the provided questions with their related answers

through the back-end management system of the KB which also presented at this report.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 3

Table of Contents

Executive Summary 2

1. Introduction 4

2. Chatbot Interface 5

3. CBR Inference Engine 8

4. Knowledge Base (KB) 10

5. Reference List 29

6. List of Abbreviations 30

Appendix A: Open Source Code and documentation 31

1. Code for generating the KB schema 31

2. CBR Technical Documentation 38

2.1. System Architecture 38

2.2. Code description 38

2.3. Code location 40

2.4. Code execution 40

2.4.1. Native python application execution 40

2.4.2. Docker environment execution 41

2.5. Use case scenarios 42

2.5.1. Predefined question 42

2.5.2. Unknown question 44

2.6. Implementation details 45

2.6.1. Hyper-parameter tuning 45

2.6.2. Model training 46

2.6.3. Model response 49

2.6.4. Best response selection 53

3. Project Code repositories 54

Appendix B: SHERPA Consortium Partners 55

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 4

1. Introduction

The SELFIE Helper consists of 3 modules:

● The Chatbot Interface, where questions by the users are asked

● The Cased Based Reasoning (CBR) Inference Engine, where questions submitted to the

Chatbot Interface are forwarded to

● The Knowledge Base (KB), where cases/answers are stored

In this report, “D2.3 SELFIE Helper final release”, we describe each of these modules in their

final released version after the results of the pilot evaluation. This report extends the document

“D2.2 Title SELFIE Helper KB and Chatbot” providing updated information regarding SELFIE

Helper final release.

The report is divided into 3 sections:

In Section 2, the Chatbot Interface is described. This section contains a screenshot of the User

Interface and describes its basic functionality. This section includes appropriate instructions

that can be used by a school in order to use the environment efficiently. It also contains technical

information about the tools used in order to build the Chatbot Interface. A link to a Git

repository is also provided for further technical instructions.

In Section 3, information regarding the CBR Inference Engine and the way it works is included.

More technical details and justification of the implementation decisions taken during the design

process of the engine can be found on report “D2.1. Design of the CBR Inference Engine and

the SELFIE Helper KB”. A link to a Git repository is also provided, containing the source code

for the CBR Inference Engine.

In Section 4, the design of the Knowledge Base (KB) is depicted and the administration

environment for accessing the KB. A detailed view of the general design of the KB can be

found on the report “D2.1. Design of the CBR Inference Engine and the SELFIE Helper KB”

and details regarding the initial implementation in “D2.3 Title SELFIE Helper KB and

Chatbot”.

Since minor changes were applied to the KB scheme, therefore was a need to apply all the latest

changes to the database. All the migrations are handled by the platform itself and are applied

by running commands on the terminal. The one used for database migrations is PHP Artisan

Migrate. The updated SQL database scheme is added in APPENDIX A at section 1. Additional

information could be found in the migrations (2022) part of the official Laravel documentation.

A link to a GitHub repository is also provided for further technical instructions.

 All the project code Git repositories are provided in APPENDIX A section 3 at Table 3.

https://laravel.com/docs/8.x/migrations#running-migrations

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 5

2. Chatbot Interface

Chatbot Interface is a web application that serves as a publicly available front-facing interface

to interact with CBR Inference Engine application programming interface (API) and

Knowledge Base (KB) Service. CBR Inference Engine API is used for submitting questions

and getting a response, provided that an algorithm is able to find a suitable answer from

available data stores. The Chatbot Interface will suggest asking the question again in English,

when no suitable answer can be found. The next step would be to offer a current user the

possibility to submit the question as a suggestion that will be handled by Country Selfie Experts.

Suggested questions would then be submitted to the KB API endpoint as a Pending Question

type. Both Chatbot Interface and specific endpoint on the KB API side are using reCPTCHA1

service to prevent misuse by the spam bots. The chatbot interface is available through the

following link: http://helper.sherpa4selfie.eu/

Figure 1. Chatbot Interface

Figure 1 shows a screenshot of the Chatbot Interface in English. It consists of two main parts:

a few example questions on the left of the screen and the conversation on the right. The left side

content consists of the most popular questions asked to the system. Clicking on one of the

questions will quickly ask that from the system. If the conversation has several questions and

answers with scrolling enabled, then the interface will make sure that the conversation area is

scrolled to the bottom with both answer and input becoming visible. That process is also

demonstrated in Figure 1. The user can also change the language of the User Interface (UI),

1 https://developers.google.com/recaptcha/

https://developers.google.com/recaptcha/
http://helper.sherpa4selfie.eu/

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 6

though that will not only change the interface but would also make sure that the system is being

asked questions while providing the language context according to the currently selected

language. The initial round of internal evaluation focused solely on using English content and

would thus be limited to the UI in English with switching the language being disabled

temporarily.

Updates from the previous versions include the option for the user to declare his/her satisfaction

through specific face-icon buttons as displayed in Figure 1. Moreover at the left part of the

interface the sample questions and the provided text has been updated. Additionally, the UI is

translated and is available now in all partners' languages. Figure 2 presents interfaces in

Estonian, Finnish, Greek and Italian.

Figure 2. Chatbot interface in partners languages

The process of manual interacting with the Chatbot Interface can be seen in Figure 3. Users can

type their questions into an input below the conversation and hit Enter or press the button to the

right. If the chatbot cannot pair the question with one of the available answers then propose the

user suggest this question as one that should be included in the Knowledge Base. If the user

presses the “Yes” button this question is added as a suggested question into the database and

SELFIE experts can manage the process of the addition to the Knowledge Base through the

Backend Management System.

 Estonian Finnish

 Greek Italian

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 7

Figure 3. Chatbot conversation with suggestions

Chatbot Interface was generated with the use of a tool called Vue CLI (2020) and uses

TypeScript (2020) instead of the standard JavaScript (Wikipedia 2020a) version. Vue.js (2020)

provides a modern JavaScript Framework with built-in reactivity and a well-established

ecosystem. Bootstrap User Interface (UI) framework (Bootstrap, 2020) provides some of the

reusable components and styling. BootstrapVue (2020) is used to get Vue.js specific flavor of

those components. The Chatbot Interface web application is a static asset package that is being

built from the source code and includes configuration for services (CBR Inference Engine API,

KB API and reCAPTCHA). Additional explanations and instructions could be found in the

README file of the GitHub SELFIE Chatbot UI repository (SHERPA Team, 2020).

Configurations are provided by an environment (.env) configuration file and included into the

resulting page source code as meta tags, which allows for the application to use those values at

runtime. This approach should later allow for the configurations to be changed even without

rebuilding from source code to provide values for different sets of configuration options.

Further technical instructions are provided in the SELFIE Helper GitHub repository (SHERPA

Team, 2020a). The pre-built packages should be available once any releases2 are tagged. The

aggregation point of all SELFIE Helper Git repositories (SHERPA Team, 2020e) is provided

at the APPENDIX A section 3 at Table 3.

2 https://github.com/centre-for-educational-technology/sherpa-helper/tags

https://cli.vuejs.org/
https://www.typescriptlang.org/
https://en.wikipedia.org/wiki/JavaScript
https://vuejs.org/
https://getbootstrap.com/
https://bootstrap-vue.org/
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/README.md
https://github.com/centre-for-educational-technology/sherpa-helper
https://github.com/centre-for-educational-technology/sherpa-helper
https://github.com/centre-for-educational-technology/sherpa-helper/tags

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 8

Repository has a Docker (2022) file to build a container with production ready built assets that

are being served by the minimalistic nginx (2022) server, having an additional capability of

providing configuration values that would be used at runtime. The process itself is pretty simple

and replacement logic could be seen in the special shell script that will be triggered on each

restart of the container, preceded by replacing existing assets with thce ones from the available

distributive that has special placeholders which are being replaced with the values provided by

the environment. A Docker Compose (2022) file serves as an example for predefined values

for the container.

3. CBR Inference Engine

The CBR Inference Engine, is an application that is capable of answer selection based on user’s

questions. Its main core is based on the ChatterBot platform (Cox, 2019) which is a machine-

learning-based conversational dialog engine built in Python. The CBR Inference Engine

operation is based on the flow diagram of the ChaterBot provided in Figure 4.

The CBR Inference Engine works in a multilingual environment and due to the use of machine

learning algorithms achieves high accurate results on user’s questions. The implementation

covers two main scenarios based on the existence of the appropriate response. Given a question,

the CBR Engine determines the similarity with the predefined closed set of questions from the

Knowledge Base. In case the similarity or confidence value is over a predefined threshold the

answer to this question is given as a response to the user. In any other case, the engine returns

an empty result and the Chatbot interface handles the following steps.

The issue of understanding users’ queries and intent and providing appropriate responses was

faced as a text and semantic similarity problem. Thus, the CBR Engine takes into account not

only the surface closeness of two pieces of text but also their meaning. In order to create a more

concrete solution and achieve accurate results, the implementation combines results from two

different algorithms. Thus, the user response comes from the algorithm that achieved the

highest score. The algorithms used are the following:

● Levenshtein distance (Wikipedia, 2020b), which is a string metric for measuring the

difference between two sequences. Informally, the Levenshtein distance between two

words is the minimum number of single-character edits (insertions, deletions or

substitutions) required to change one word into the other.

● FastText algorithm (Wikipedia, 2020c), which is a library for learning of word

embeddings and text classification created by Facebook's AI Research (FAIR) lab. The

model represents questions as word vectors leveraging the fact that neighboring words

in a sentence affect the semantic meaning of that word.

Each algorithm is trained based on the closed set of questions located on the Knowledge Base.

As new questions are populated on the KB the models are retrained once a day via a cron job.

https://www.docker.com/
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/Dockerfile
https://nginx.org/en/
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/docker/00-make-runtime-replacements.sh
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/Dockerfile#L14
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/Dockerfile#L12
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/docker/docker-env
https://docs.docker.com/compose/
https://github.com/centre-for-educational-technology/sherpa-helper/blob/master/docker-compose.yml
https://chatterbot.readthedocs.io/en/stable/

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 9

Both algorithms gather the Q&A pairs via REST calls, transform and apply them as an input.

We need to mention that the FastText algorithm creates as many models as the languages

supported by the system. Each model is located on the local file system and is used

when needed. The CBR Engine exposes a REST API to communicate with the ChatBot

Interface and based on the input parameters, language code and question, respond to the

user. The CBR Inference Engine code written in python is available at the following Open

Chatbot GitHub repository (SHERPA Team, 2020d).

Figure 4. ChaterBot flow diagram

(Source: https://chatterbot.readthedocs.io/en/stable/)

Updates from the initial release were made in order to increase the system accuracy and

performance. From a technical perspective, in order to make the system more reliable, we had

to define a threshold value below which the system could return an empty response. To be

more specific, a system with a high threshold value (0.8 - 0.9) would return empty results as it

may not find answers with such a high confidence score. On the other hand, a system with a

really low value (0.3) would return many wrong answers as the confidence value of the

responses will be extremely low. Thus, through an experimental setup using many questions

https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine
https://chatterbot.readthedocs.io/en/stable/

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 10

and answer pairs in different languages the team decided that a value equal to 0.7 leads to

promising results with an acceptable error number of wrong answers.

 Furthermore, through experiments, we tried to find the most accurate hyper parameters for

the fastText algorithm. The criteria for such a decision were the learning rate, the minimum n-

grams and the loss function. Thus, the algorithm had high accuracy scores and in almost all

cases responded impressively. Finally, our initial lack of dataset was solved with all team's

effort who created almost one thousand questions using the SELFIE guide as a source and

paraphrasing tools. So, we end up having a promising number of question-answer pairs for all

the needed cases.

The CBR technical documentation is available at APPENDIX 7.2 CBR Technical

Documentation and further technical details are provided in the SHERPA KB GitLab repository

(SHERPA TEAM, 2020d). The Sherpa CBR Gitlab repository contains all the code needed to

build and deploy the inference engine. Specifically, it contains a complete README file with

instructions for both docker and native python execution. Also, contains a requirements txt file

which contains all the necessary dependencies to install in any setup.

4. Knowledge Base (KB)

SELFIE Helper, includes a database that contains a set of questions and answers, described as

Knowledge Base (KB). At the end of the project, the Knowledge Base comprised 4695 questions and

373 corresponding answers available via SELFIE Helper in 5 languages.

A Web application was built in order to manage questions and answers. This data would later

on be used as a basis for CBR Inference Engine training data set. An additional functionality is

an API endpoint for submitting suggestions (Pending Questions) that will go through a review

process and could potentially become questions that are used by the SELFIE Helper. The KB

database is structured according to “D2.1. Design of the CBR Inference Engine and the SELFIE

Helper KB” document while information regarding the first version are available to “D2.2

SELFIE Helper KB and Chatbot”.

 The final release of Knowledge Base application contains several new features and

improvements, with most important one being listed below:

• Improved statistics table that also shows the number of translated Questions that have

relation to translated Answers (Figure 28).

• Real-time updates functionality for all of the available data types that enable multiple

users to use the system at once and get all of the data updates without ever needing to

refresh the data set (Figure 33).

• Questions and answers without translations to the current language have buttons with

the number of translations shown in red and fully translated to all the languages shown

in green (table rows of figures 10 and 12).

• A standalone column in the answers table will not allow the user to see the list of all

related questions (Figure 20). Any question from the list could be edited without closing

the dialog and navigating to the questions tab (Figure 21).

https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 11

• Answer select has a new input that allows both searching from the existing ones and

creating the new one in place (Figures 9, 10, 12, 22 and 24).

• Questions, answers and pending questions can now be deleted with the click of a button

located at the bottom of the edit form (Figures 13, 13, 14, 15 and 17). The system will

show an additional dialog to make sure that the user really wants the deletion to take

place.

• Categories can now be managed by Master Selfie Experts and the new feature is located

in the corresponding tab (Figures 29, 30, 31, and 32).

• Chatbot Interface will now be sending data about usage to the newly added API

endpoints. That includes the cases of:

o question asked, answer received and a language key

o question asked, answer received, language key and a user rating

• System will log actions taken with the data models, also logging changes made to the

attributes. An example of that would be a new question being added, an existing

question being changed and

• that same question being removed.

• Previous version did not allow adding questions or answers purely in English, without

providing translation to at least one more language. New version has that capability and

no longer treats English as just a baseline language for making translations.

• Latest version includes numerous upgrades to the base platform and dependencies on

both the back- and front-end side. This is important for the long term sustainability of

the system and would allow the developer to easily apply the updates in future versions.

KB service is based on a Laravel Web framework (Laravel, 2020) and is closely following the

best practices for the structure of the codebase itself and internals of the application logic. Web

application is using the default UI package that provides basic user registration and

authentication flow and UI. The package is based on a Bootstrap UI framework, with Vue.js JS

framework being used on the client side with an addition of components provided by

BootstrapVue. The resulting UI is not a single-page application (Wikipedia, 2020d), though it

heavily relies on Vue.js components with most of the complex views relying on components

instead of server-side templates. More information about requirements, installation and

development process could be found from Laravel Documentation and SHERPA Knowledge

Base GitHub repository (SHERPA Team, 2020b) README file. The latter would hold any

data that is specific to current implementation.

The Web application supports the Master Selfie Expert and the Country Selfie Experts

categories of users, as described in “D2.1. Design of the CBR Inference Engine and the SELFIE

Helper KB” document. Overall, the Web application supports several roles, with some of those

being explicit and some implicit. The roles are as follows:

● Anonymous - anonymous user that will only be able to see the landing page with a link

to login page (Figure 5), not an explicit role or a role as such. Most of the API endpoints

are also publicly available

● Administrator - a user role that should mostly deal with user account management tasks,

though there also is a full access for the KB specific content

https://laravel.com/
https://en.wikipedia.org/wiki/Single-page_application
https://laravel.com/docs/8.x
https://github.com/pjotrsavitski/sherpa-kb/blob/master/README.md

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 12

● Authenticated - a user with an account that will be able to authenticate and access the

User Home with no content, not an explicit role

● Country Selfie Expert - a user that has ability to review Pending Questions, add new

Questions and Answers, translate existing Questions and Answers, mark Questions and

Answers as translated and send those for review. This role requires the language field

to have a value, making a user an expert for that specific language

● Master Selfie Expert - a user that has the ability to perform Country Selfie Expert actions

for any of the languages, reviews Questions and Answers before those could be

published

Users with credentials can login in order to gain access to the Web application’s features (Figure

5). User Management could be accessed through the dropdown menu at the top right of the page

where the name of the current user is shown. Corresponding menu entry will only be available

to users that have sufficient rights for user management. As the system does not allow self-

registration, the only way to create new accounts would be for one of the administrators to do

that through User Management. User roles could be assigned at creation time or later on through

the user account edit dialog.

There also is an API that allows Pending Question to be submitted, currently used by the

Chatbot Interface application. This is the only API endpoint that uses reCAPTCHA for

providing protection against spam bots. The rest of the API is only meant for fetching the

Question and Answer data and would be used by the CBR Inference Engine to update the

dataset while running the training routines. Current implementation would allow the API to

return data for both Published and Translated content. Initial design only assumed the published

content to be exposed through the API. The main difference is that Published content has to be

reviewed by the Master Selfie Expert and will have translations for all the languages present.

Figure 5. Login screen

The Administrator can perform tasks regarding user management, such as adding a new user

and assign roles (Figure 6), viewing all existing users (Figure 7) and editing existing users’

settings (Figure 8).

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 13

Figure 6. Administrator adds a new user and assigns role

Figure 7. Administrator user management

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 14

Figure 8. Administrator edits an existing user’s settings

The Country Selfie Expert can add new Questions (Figure 9) and Answers (Figures 10 and 11)

or edit existing Questions (Figure 12) and Answers (Figure 14). Both question (Figure 13) and

answers (Figure 15) can be deleted. Country Selfie Expert views for Questions and Answers

also include a creation functionality that can be used by pressing the button with plus icon and

filling the required data in the opened dialog. The system will also allow the table with data for

any of the content types to be searched/filtered by both text in English and one for the currently

selected language or language of the expert.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 15

Figure 9. The Country Selfie Expert adds a new question

Figure 10. The Country Selfie Expert adds a new answer while creating a question

Figure 11. The Country Selfie Expert adds a new answer

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 16

Figure 12. The Country Selfie Expert edits a question

Figure 13. The Country Selfie Expert deletes an existing question

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 17

Figure 14. The Country Selfie Expert edits an answer

Figure 15. The Country Selfie Expert deletes an existing answer

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 18

The Country Selfie Expert can also view Pending Questions (Figure 16) and edit pending

questions in order to provide translations (Figure 17). Pending Question status could be changed

to Propagated and thus send it to Master Selfie Expert for review.

Figure 16. Country Selfie Expert view for pending questions in English

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 19

Figure 17. The Country Selfie Expert edits a pending-question

Master Selfie Expert can view the same content as a Country Selfie Expert (Figure 18), see a

list of all questions (Figure 19) and answers (Figure 20) for a specific language and see a list of

pending-questions for a specific language (Figure 23).

The listing view for Answers also contains a column (Figure 20) that allows one to view all the

related Questions (Figure 21). This dialog allows editing any of those questions without leaving

the view (Figure 22).

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 20

Figure 18. Country Selfie Expert view accessed by Master Selfie Expert

Figure 19. The Master Selfie Expert view of questions (Country Selfie Expert view for Estonian)

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 21

Figure 20. Master Selfie Expert view of answers (Country Selfie Expert view for Estonian)

Figure 21. List of all Questions related to a certain Answer

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 22

Figure 22. Editing a question directly from the list of related questions

Figure 23. Master Selfie Expert list of pending-questions (Country Selfie Expert view for Estonian)

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 23

The Master Selfie Expert can also review Questions (Figure 24) and Answers (Figure 25),

before those could be published. Finally, he or she can view (Figure 26) and review (Figure 27)

all pending questions and access statistics data about the KB (Figure 28).

Figure 24. The Master Selfie Expert reviews a question

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 24

Figure 25. The Master Selfie Expert reviews an answer

Figure 26. The Master Selfie Expert views pending questions (propagated, canceled and completed)

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 25

Figure 27. The Master Selfie Expert reviews a pending question

Figure 28. Master Selfie Expert statistics page

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 26

Master Selfie Experts are also allowed to access the categories management tab (Figure 29).

Category management solution is quite simple and includes adding new (Figure 30), editing

(Figure 31) and deleting (Figure 32) existing ones.

Figure 29. Master Selfie Expert categories management page

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 27

Figure 30. Master Selfie Expert adding a new category

Figure 31. Master Selfie Expert editing an existing category

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 28

Figure 32. Master Selfie Expert deleting an existing category

Figure 33. Real-time updates for all the data

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 29

Application includes capability of using real-time updates, allowing different users to get the

latest data without having to refresh the browser (Figure 33). This is a separately configurable

service, which is optional yet strongly suggested. In case the real-time updates service

configuration is missing, the interface will just show the refresh button that would allow the user

to fetch the fresh copy of the data from the server. This is just a fallback solution and

administrators are highly discouraged from using the service without that feature enabled.

Further technical details are provided in the SHERPA KB GitHub repository (SHERPA TEAM,

2020b). Please make sure that you use the production (SHERPA TEAM, 2020c) branch

outside of development as that contains static assets that have been specifically built for use

in a live environment.

5. Reference List

Bootstrap (2020). Build fast, responsive sites with Bootstrap, Retrieved from

https://getbootstrap.com/

BootstrapVue (2020). Retrieved from https://bootstrap-vue.org/

Cox, G. (2019). ChatterBot: Machine learning, conversational dialog engine, Retrieved from

https://chatterbot.readthedocs.io/en/stable/

EELLAK (2020). Open Chatbot GitHub repository, Retrieved from

https://github.com/eellak/openchatbot

Docker (2022). Docker makes development efficient and predictable, Retrieved from

https://www.docker.com/

nginx (2022). nginx [engine x] is an HTTP and reverse proxy server, a mail proxy server, and

a generic TCP/UDP proxy server, originally written by Igor Sysoev, Retrieved from

https://nginx.org/en/

Docker Compose (2022). Compose is a tool for defining and running multi-container Docker

applications, Retrieved from https://docs.docker.com/compose/

Laravel (2020). Laravel: The PHP Framework for Web Artisans, Retrieved from

https://laravel.com/

Laravel documentation (2022). Official documentation for the Laravel framework, Retrieved

from https://laravel.com/docs/8.x/

Microsoft (2020). TypeScript, Retrieved from https://www.typescriptlang.org/

SHERPA TEAM (2020a). SELFIE Helper GitHub Repository, Retrieved from

https://github.com/centre-for-educational-technology/sherpa-helper/tree/master/

SHERPA TEAM (2020b). SHERPA Knowledge Base GitHub Repository, Retrieved from

https://github.com/centre-for-educational-technology/sherpa-kb/tree/master

SHERPA TEAM (2020c). SHERPA Knowledge Base GitHub Repository, Retrieved from

https://github.com/centre-for-educational-technology/sherpa-kb/tree/production

SHERPA TEAM (2020d). SHERPA CBR Inference Engine GitLab Repository, Retrieved from

https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine

SHERPA TEAM (2020e). SHERPA Project Aggregation point GitLab Repository, Retrieved

from https://gitlab.com/aetma/sherpa-project

Vue CLI (2020) Retrieved from https://cli.vuejs.org/

https://github.com/centre-for-educational-technology/sherpa-kb
https://github.com/pjotrsavitski/sherpa-kb/tree/production
https://www.docker.com/
https://nginx.org/en/

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 30

Vue.jd (2020) Retrieved from https://vuejs.org/

Wikipedia (2020a). JavaScript, Retrieved from https://en.wikipedia.org/wiki/JavaScript

Wikipedia (2020b). Levenshtein distance, Retrieved from

https://en.wikipedia.org/wiki/Levenshtein_distance

Wikipedia (2020c). FastText, Retrieved from https://en.wikipedia.org/wiki/FastText

Wikipedia (2020d). Single-page application, Retrieved from

https://en.wikipedia.org/wiki/Single-page_application

6. List of Abbreviations

Table 1. List of Abbreviations

Abbreviation Meaning

AETMA Lab -

IHU

Advanced Educational Technologies and Mobile Applications Lab of

International Hellenic University

API Application Programming Interface

CBR Case Based Reasoning

CNR-ITD National Research Council of Italy, Institute for Educational Technology

CPI Cyprus Pedagogical Institute

D Deliverable

EC European Commission

JYU University of Jyvaskyla

KA Key Action

KB Knowledge Base

M Month

P Partner

Q&A Questions and Answers

REST Representational State Transfer

SHERPA SELFIE HElpeR & Pedagogical innovation Assistant

TLU Tallinn University

UI User Interface

WP Work Package

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 31

Appendix A: Open Source Code and documentation

1. Code for generating the KB schema
**
Sequel Ace SQL dump
Version 20033

https://sequel-ace.com/
https://github.com/Sequel-Ace/Sequel-Ace

Host: 127.0.0.1 (MySQL 8.0.23)
Database: sherpakb
Generation Time: 2022-06-21 13:50:53 +0000
**

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
SET NAMES utf8mb4;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE='NO_AUTO_VALUE_ON_ZERO',

SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

Dump of table activity_log
--

DROP TABLE IF EXISTS `activity_log`;

CREATE TABLE `activity_log` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `log_name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci DEFAULT

NULL,
 `description` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `subject_type` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci

DEFAULT NULL,
 `subject_id` bigint unsigned DEFAULT NULL,
 `causer_type` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci

DEFAULT NULL,
 `causer_id` bigint unsigned DEFAULT NULL,
 `properties` json DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `subject` (`subject_type`,`subject_id`),
 KEY `causer` (`causer_type`,`causer_id`),
 KEY `activity_log_log_name_index` (`log_name`)
) ENGINE=InnoDB AUTO_INCREMENT=6329 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table answer_language
--

DROP TABLE IF EXISTS `answer_language`;

CREATE TABLE `answer_language` (

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 32

 `answer_id` bigint unsigned NOT NULL,
 `language_id` bigint unsigned NOT NULL,
 `description` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`answer_id`,`language_id`),
 KEY `answer_language_language_id_foreign` (`language_id`),
 CONSTRAINT `answer_language_answer_id_foreign` FOREIGN KEY (`answer_id`)

REFERENCES `answers` (`id`) ON DELETE CASCADE,
 CONSTRAINT `answer_language_language_id_foreign` FOREIGN KEY (`language_id`)

REFERENCES `languages` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table answers
--

DROP TABLE IF EXISTS `answers`;

CREATE TABLE `answers` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `status` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=70 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table failed_jobs
--

DROP TABLE IF EXISTS `failed_jobs`;

CREATE TABLE `failed_jobs` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `uuid` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci DEFAULT '',
 `connection` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `queue` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `payload` longtext CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `exception` longtext CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `failed_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 UNIQUE KEY `failed_jobs_uuid_unique` (`uuid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table helper_activity_log
--

DROP TABLE IF EXISTS `helper_activity_log`;

CREATE TABLE `helper_activity_log` (
 `question` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `answer` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `language_code` varchar(5) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 33

 `ip` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NOT NULL,
 KEY `helper_activity_log_language_code_index` (`language_code`),
 KEY `helper_activity_log_created_at_index` (`created_at`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table helper_response_user_ratings
--

DROP TABLE IF EXISTS `helper_response_user_ratings`;

CREATE TABLE `helper_response_user_ratings` (
 `question` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `answer` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `language_code` varchar(5) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `rating` tinyint unsigned NOT NULL,
 `ip` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NOT NULL,
 KEY `helper_response_user_ratings_language_code_index` (`language_code`),
 KEY `helper_response_user_ratings_rating_index` (`rating`),
 KEY `helper_response_user_ratings_created_at_index` (`created_at`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table language_pending_question
--

DROP TABLE IF EXISTS `language_pending_question`;

CREATE TABLE `language_pending_question` (
 `pending_question_id` bigint unsigned NOT NULL,
 `language_id` bigint unsigned NOT NULL,
 `description` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`pending_question_id`,`language_id`),
 KEY `language_pending_question_language_id_foreign` (`language_id`),
 CONSTRAINT `language_pending_question_language_id_foreign` FOREIGN KEY

(`language_id`) REFERENCES `languages` (`id`) ON DELETE CASCADE,
 CONSTRAINT `language_pending_question_pending_question_id_foreign` FOREIGN KEY

(`pending_question_id`) REFERENCES `pending_questions` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table language_question
--

DROP TABLE IF EXISTS `language_question`;

CREATE TABLE `language_question` (
 `question_id` bigint unsigned NOT NULL,
 `language_id` bigint unsigned NOT NULL,
 `description` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 34

 PRIMARY KEY (`question_id`,`language_id`),
 KEY `language_question_language_id_foreign` (`language_id`),
 CONSTRAINT `language_question_language_id_foreign` FOREIGN KEY (`language_id`)

REFERENCES `languages` (`id`) ON DELETE CASCADE,
 CONSTRAINT `language_question_question_id_foreign` FOREIGN KEY (`question_id`)

REFERENCES `questions` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table languages
--

DROP TABLE IF EXISTS `languages`;

CREATE TABLE `languages` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `code` varchar(5) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `name` varchar(30) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `languages_code_unique` (`code`),
 UNIQUE KEY `languages_name_unique` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table migrations
--

DROP TABLE IF EXISTS `migrations`;

CREATE TABLE `migrations` (
 `id` int unsigned NOT NULL AUTO_INCREMENT,
 `migration` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `batch` int NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=50 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table model_has_permissions
--

DROP TABLE IF EXISTS `model_has_permissions`;

CREATE TABLE `model_has_permissions` (
 `permission_id` bigint unsigned NOT NULL,
 `model_type` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `model_id` bigint unsigned NOT NULL,
 PRIMARY KEY (`permission_id`,`model_id`,`model_type`),
 KEY `model_has_permissions_model_id_model_type_index` (`model_id`,`model_type`),
 CONSTRAINT `model_has_permissions_permission_id_foreign` FOREIGN KEY

(`permission_id`) REFERENCES `permissions` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 35

Dump of table model_has_roles
--

DROP TABLE IF EXISTS `model_has_roles`;

CREATE TABLE `model_has_roles` (
 `role_id` bigint unsigned NOT NULL,
 `model_type` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `model_id` bigint unsigned NOT NULL,
 PRIMARY KEY (`role_id`,`model_id`,`model_type`),
 KEY `model_has_roles_model_id_model_type_index` (`model_id`,`model_type`),
 CONSTRAINT `model_has_roles_role_id_foreign` FOREIGN KEY (`role_id`) REFERENCES

`roles` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table password_resets
--

DROP TABLE IF EXISTS `password_resets`;

CREATE TABLE `password_resets` (
 `email` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `token` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 KEY `password_resets_email_index` (`email`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table pending_questions
--

DROP TABLE IF EXISTS `pending_questions`;

CREATE TABLE `pending_questions` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `status` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `group_no` int DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=31 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table permissions
--

DROP TABLE IF EXISTS `permissions`;

CREATE TABLE `permissions` (

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 36

 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `guard_name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table questions
--

DROP TABLE IF EXISTS `questions`;

CREATE TABLE `questions` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `status` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `topic_id` bigint unsigned DEFAULT NULL,
 `answer_id` bigint unsigned DEFAULT NULL,
 `pending_question_id` bigint unsigned DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `questions_topic_id_foreign` (`topic_id`),
 KEY `questions_answer_id_foreign` (`answer_id`),
 KEY `questions_pending_question_id_foreign` (`pending_question_id`),
 CONSTRAINT `questions_answer_id_foreign` FOREIGN KEY (`answer_id`) REFERENCES

`answers` (`id`) ON DELETE SET NULL,
 CONSTRAINT `questions_pending_question_id_foreign` FOREIGN KEY

(`pending_question_id`) REFERENCES `pending_questions` (`id`) ON DELETE SET NULL,
 CONSTRAINT `questions_topic_id_foreign` FOREIGN KEY (`topic_id`) REFERENCES

`topics` (`id`) ON DELETE SET NULL
) ENGINE=InnoDB AUTO_INCREMENT=1152 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table role_has_permissions
--

DROP TABLE IF EXISTS `role_has_permissions`;

CREATE TABLE `role_has_permissions` (
 `permission_id` bigint unsigned NOT NULL,
 `role_id` bigint unsigned NOT NULL,
 PRIMARY KEY (`permission_id`,`role_id`),
 KEY `role_has_permissions_role_id_foreign` (`role_id`),
 CONSTRAINT `role_has_permissions_permission_id_foreign` FOREIGN KEY

(`permission_id`) REFERENCES `permissions` (`id`) ON DELETE CASCADE,
 CONSTRAINT `role_has_permissions_role_id_foreign` FOREIGN KEY (`role_id`)

REFERENCES `roles` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Dump of table roles
--

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 37

DROP TABLE IF EXISTS `roles`;

CREATE TABLE `roles` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `guard_name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT

NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table topics
--

DROP TABLE IF EXISTS `topics`;

CREATE TABLE `topics` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `description` text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=53 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Dump of table users
--

DROP TABLE IF EXISTS `users`;

CREATE TABLE `users` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `email` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `email_verified_at` timestamp NULL DEFAULT NULL,
 `password` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 `remember_token` varchar(100) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci

DEFAULT NULL,
 `language_id` bigint unsigned DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `users_email_unique` (`email`),
 KEY `users_language_id_foreign` (`language_id`),
 CONSTRAINT `users_language_id_foreign` FOREIGN KEY (`language_id`) REFERENCES

`languages` (`id`) ON DELETE SET NULL
) ENGINE=InnoDB AUTO_INCREMENT=12 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 38

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

2. CBR Technical Documentation

The main part of the SHERPA Helper is the chatbot inference engine. Its main

responsibility is answer selection to user’s questions based on a predefined closed set

of Q&A pairs. This document aims to describe such choices through analytical

explanation and examples where necessary.

2.1. System Architecture

ChatBot implementation was based on ChatterBot platform, which is a machine-

learning based conversational dialog engine built in Python which makes it possible

to generate responses based on collections of known conversations. It uses a selection

of machine learning algorithms to produce different types of responses.

The given input is provided using a REST API implementation via an endpoint. The

user needs to provide the proper question on a string format as long as the language

code. In our current implementation our multilingual system supports English, Greek

, Italian, Estonian and Finish. One can ask a question using the following language

codes: {en,gr,it,et,fi} respectively.

2.2. Code description

Our implementation is organized into packages based on their functionality. We

explain each package and main purpose in the Table 1.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 39

Table 1. Description of ChatterBot packages

Package

name

Description

config It contains the app_config.ini file where the environment variables (local

db host/port/password , external db api url etc) are assigned values.

core The directory contains the core logic of our application.

● adapters: This package contains two custom logic adapters, the

fastTextLogiAdapter and the logicAdapter. As it described in the

official documentation the logic adapters are used to determine

the way we select an output to an input statement. So, the

CustomLogicAdapter (logicAdapter.py) selects the response with

the closest match using the levenshtein distance algorithm

whereas the FastTextLogicAdapter (FastTextLogicAdapter.py)

uses the proper fastText model based on the input language. In

both cases we need to implement the process function with our

custom logic.

● http: This package contains an HttpClient class which is used to

communicate with an external db. It has a method per endpoint

such as to retrieve all topics, languages etc.

● model: The folder contains two subfolders. The wordSimilarity

subfolder contains a python class with the proper trainer. The

ChatterBotWordSimilarityTrainer extends the base Trainer class

and implements the train function with our own logic. So, we

retrieve, from the external db, all question-answer pairs per

language which are stored in our local db in the Statement format

(described in the documentation). The fastTextTrainer extends

the base Trainer class and implements the train function. In order

to create a unique model per language with retrieve each

language code from the external db. For every code, we create a

model, response_data and train_data file as described in the files

section below. Once we create the proper files we train the model

with some custom parameters described in a dictionary named

hyper_params. In case we need to modify the algorithm’s

accuracy we can change those parameters. Each one is described

in an analytical way on the official fastText documentation.

files This directory contains 3 subdirectories which are used by the fastText

algorithm.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 40

● models: Once the fastText algorithm is executed this folder

contains all .bin files where all models are described.

● response_data: The folder contains a json file per language. Each

json is a dictionary with (label, answer) pairs.

● train_data: The folder contains one txt file per language. Each

row contains a (label,question) pair. We need to mention that a

label contains many questions but only an answer.

In the above Table 1 we described all the internal python classes. Our core logic is

orchestrated by an app.py file which is capable of reading the external configuration

from app_config.ini file, to initiate the ChatBot engine and to provide the REST

endpoint for all external users, such as an API.

The endpoint description is presented in Table 2.

Table 2. Endpoint Description

Endpoint name Description

/applyQuestion The endpoint gets a json input containing the question and

language code. Then, it executes the generaResponse method

which is capable of running the chatbot and selects the answer

with the higher accuracy score.

2.3. Code location

The application code is located in AETMA lab github account under SHERPA project

directory and can be accessed through the GitLab link.

2.4. Code execution

The application can be executed both as a native python app or via docker. In the

following sections we will show in an analytical way the commands we need to use

for both execution types.

2.4.1. Native python application execution

https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 41

foo@bar:~ git clone https://gitlab.com/aetma/sherpa-

project/sherpa_inference_engine.git
foo@bar:~ cd sherpa_inference_engine
foo@bar:~ pip install -r requirements.txt
foo@bar:~ python app.py

Once the execution starts the logs are shown on the command line. The requirements

file contains all the application dependencies regarding the external and internal

services needed to deploy the app. Such services are a mysql connector, a restful

engine, the fastText library, the chatterbot core code as well as json libs.

2.4.2. Docker environment execution

Another way to execute the application is the use of the docker environment. In the

following lines we show the instructions needed to install docker on a native Ubuntu

machine and how to deploy the application.

foo@bar:~ sudo apt-get update
foo@bar:~ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 gnupg \
 lsb-release
foo@bar:~ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --

dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
foo@bar:~ echo \
 "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list >

/dev/null
foo@bar:~ sudo apt-get update
foo@bar:~ sudo apt-get install docker-ce docker-ce-cli containerd.io

Once the installation is completed we can use the following command to deploy our

app.

foo@bar:~ docker-compose build && docker-compose up -d

Finally, the logs can be accessed through the next command.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 42

foo@bar:~ docker logs -f chatbot

2.5. Use case scenarios

In the following section we will describe two use case scenarios along with the system

logs. The first scenario will contain a question from the training set whereas the second

one will have a new one. Our goal is to clarify the way the system selects the most

proper answer based on the algorithm with the highest score.

2.5.1. Predefined question

Question (cURL format)

curl -X POST "http://helper.sherpa4selfie.eu:5000/chatterbot/applyQuestion"
-H "accept: application/json"
-H "Content-Type: application/json"
-d "{
 \"text\": \"What is a school profile?\",
 \"languageCode\": \"en\"
 }"

Answer

[
 "A school profile contains the name and contact information of the school, and

also how the school is operated and funded. School profile will be defined after

logging into Selfie, and should be checked at least once a year."
]

In the following table, via the system logs, we can see the process of choosing the

correct answer. As we have already mentioned the system uses two approaches, the

closest match and the fastText algorithm. The system will try to find the statement that

mostly matches the input questions. We can see that using MyLogicAdapter the

system chooses the statement with a confidence score 0.98. Using the

FastTextLogicAdapter the system chooses the statement with score 0.99 so finally the

response comes from the algorithm with the highest confidence value score.

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 43

INFO:chatterbot.chatterbot: Beginning search for close text

match

 INFO:chatterbot.chatterbot:

Processing search

results

 INFO:cha

tterbot.chatterbot: Similar text found:
Only the school coordinator needs to login to Selfie. No other member in the

school community needs to login to Selfie.

0.21 INFO:chatterbot.chatterbot: Similar text found: I

don't have a school account! Can I sign up with my mail account?

0.35

 INFO:chatterbot.chatterbot: Similar text found: How does the use of SELFIE can

benefit a school?

0.38

 INFO:chatterbot.chatterbot:Similar text found: How can selfie

help a school?

0.44

 INFO:chatterbot.chatterbot:Similar text

found: What is a school coordinator

0.72

 INFO:chatterbot.chatterbot:Similar text

found: What is a school supervisor?

0.79

 INFO:chatterbot.chatterbot:Similar text

found: What is a school profile

0.98

 INFO:chatterbot.chatterbot: Using

"What is a school profile" as a close match to "What is a school profile?" with a

confidence of

0.98 INFO:chatter

bot.chatterbot: Selecting response from optimal

responses.

 INFO:chatterbot.response_s

election: Selecting response from list of

options.

 INFO:chatterbot.chatterbot:Response

selected. Using "A school profile contains the name and contact information of

the school, and also how the school is operated and funded. School profile will

be defined after logging into Selfie, and should be checked at least once a

year."

 INFO:chatterbot.chatterbot:MyLogicAdapter

selected "A school profile contains the name and contact information of the school,

and also how the school is operated and funded. School profile will be defined

after logging into Selfie, and should be checked at least once a year." as a

response with a confidence of

0.98

 INFO:chatterbot.chatterbot:FastTextLogicAdapter selected "A school profile

contains the name and contact information of the school, and also how the school

is operated and funded. School profile will be defined after logging into Selfie,

and should be checked at least once a year." as a response with a confidence of

0.9997645020484924

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 44

2.5.2. Unknown question

In the following section we will also apply a question related to the definition of the

school profile.

Question (cURL format)

curl -X POST "http://helper.sherpa4selfie.eu:5000/chatterbot/applyQuestion"
-H "accept: application/json"
-H "Content-Type: application/json"
-d "{
 \"text\": \"Which is the definition of the school profile?\",
 \"languageCode\": \"en\"
 }"

Answer

[
 "A school profile contains the name and contact information of the school, and

also how the school is operated and funded. School profile will be defined after

logging into Selfie, and should be checked at least once a year."
]

As we can see in the following table the closest match algorithm is not able to find a

statement as all similarity scores are pretty low, so it generates an alternative one with

a confidence score equal to zero. On the other hand, the fastText algorithm generates

the correct response with a high confidence value. In that case we understand the

effectiveness of text similarity that an algorithm such as fastText is able to locate.

INFO:chatterbot.chatterbot:Processing search

results

 INFO:chat

terbot.chatterbot:Similar text found: Only the school coordinator needs to login

to Selfie. No other member in the school community needs to login to Selfie.

0.24
INFO:chatterbot.chatterbot:Similar text found: I don't have a school account! Can

I sign up with my mail account?

0.27

 INFO:chatterbot.chatterbot:Similar text found: How does the use of SELFIE can

benefit a school?

0.47

 INFO:chatterbot.chatterbot:Similar text found: What is the

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 45

supervisor for a school?

0.54

 INFO:chatterbot.chatterbot:Similar text found:

What is the coordinator of a school?

0.66

 INFO:chatterbot.chatterbot:Similar text found:

What is the meaning of a school profile?

0.77

 INFO:chatterbot.chatterbot:Similar text found: What

is the definition of a school leader

0.78

 INFO:chatterbot.chatterbot:Using "Only the school

coordinator needs to login to Selfie. No other member in the school community

needs to login to Selfie." as a close match to "Which is the definition of the

school profile?" with a confidence of

0.24

 INFO:chatter

bot.chatterbot:No responses found. Generating alternate response

list.

 INFO:chatterbot.chatterbot:No known

response to the input was found. Selecting a random

response.

 INFO:chatterbot.chatterbot:MyLogicAdapter selected

"Teachers are defined as persons who are qualified teachers and other personnel

directly involved in teaching students (whole class and/or small groups or

individuals). Please do not include teachers who are primarily in a management

role - they fall into the school leader group." as a response with a confidence

of 0 INFO:chatterbot.chatterbot:FastTextLogicAdapter

selected "A school profile contains the name and contact information of the school,

and also how the school is operated and funded. School profile will be defined

after logging into Selfie, and should be checked at least once a year." as a

response with a confidence of 0.988141655921936

2.6. Implementation details

2.6.1. Hyper-parameter tuning

As it is described in the code description the fastTextTrainer contains a set of

parameters which affects its efficiency. Our set up came up with a number of

experiments and by following the official documentation. To be more specific, in the

fastTextTrainer.py file (located in core/model/fastText path) we have the following

code.

hyper_params = {"lr": 1.0,
 "epoch": 50,

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 46

 "wordNgrams": 2,
 "minn": 3,
 "maxn": 5,
 "dim": 100}
model = fasttext.train_supervised(input=train_file_name, **hyper_params)

We can see that we set the hyper_params dictionary which is passed as a parameter in

the new model. Anyone can change these parameters in order to achieve higher

accuracy. We will describe in the following lines in a nutshell the use of each

parameter.

● lr: a way to change the learning speed of our model is to increase (or decrease)

the learning rate of the algorithm. This corresponds to how much the model

changes after processing each example. A learning rate of 0 would mean that

the model does not change at all, and thus, does not learn anything.

● epoch: the number of times each example is seen.

● wordNgrams: the way to use bigrams or more in our model. It is important in

our case as the word order is critical.

● minn: min length of char ngram.

● maxn: max length of char ngram.

● dim: size of word vectors.

2.6.2. Model training

In the following tables we will describe the training code that both models are

following which is located in fastTextTrainer.py and in wordSimilarityTrainer.py for

fastText and word similarity algorithms respectively.

class ChatterBotWordSimilarityTrainer(Trainer):
 def __init__(self, chatbot, **kwargs):
 super().__init__(chatbot, **kwargs)
 self.httpClient = None

 def setHttpClient(self, httpClient):
 self.httpClient = httpClient

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 47

 def train(self, *corpus_paths):
 languages = self.httpClient.getAllLanguages()

 for language in languages:
 statements_to_create = []
 languageCode = language['code']
 questions = self.httpClient.getQuestionsPerLanguage(languageCode)
 for question in questions:
 answer = question['answer']
 response = answer['description']
 question = question['description']
 statement_search_text =

self.chatbot.storage.tagger.get_bigram_pair_string(response)
 search_in_response_to =

self.chatbot.storage.tagger.get_bigram_pair_string(question)
 statement = Statement(
 text=response,
 search_text=statement_search_text,
 in_response_to=question,
 search_in_response_to=search_in_response_to,
 conversation='training'
)
 statement = self.get_preprocessed_statement(statement)
 statements_to_create.append(statement)

 pattern_pair =

self.chatbot.storage.tagger.get_bigram_pair_string(question)
 statement = Statement(
 text=question,
 search_text=pattern_pair,
 conversation='training'
)
 statement = self.get_preprocessed_statement(statement)
 statements_to_create.append(statement)
 self.chatbot.storage.create_many(statements_to_create)

As we can see, using an http client we receive all question/answer pairs for every

language from the external database. For each question/answer pair we create a

Statement, which is an internal representation of the chatterbot engine, and we store it

in our mysql database.

class ChatterBotFastTextTrainer(Trainer):

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 48

 def __init__(self, chatbot, **kwargs):
 super().__init__(chatbot, **kwargs)
 self.httpClient = None

 def setHttpClient(self, httpClient):
 self.httpClient = httpClient

 def preprocess(self, line):
 filtered_line = ''
 line_token = word_tokenize(line)
 remove_sw = [word for word in line_token if not word in STOP_WORDS]
 filtered_line += ' '.join(remove_sw)
 filtered_line += '\n'
 return filtered_line.replace(' ', '\t', 1)

 def train(self):
 languages = self.httpClient.getAllLanguages()
 for language in languages:
 languageCode = language['code']
 train_data = ''
 response_data = {}
 train_file_name = os.path.join(os.getcwd(),
 'files/train_data/' + languageCode + '.txt')
 response_file_name = os.path.join(os.getcwd(),
 'files/response_data/' + languageCode + '.json')

 createFile(train_file_name)
 createFile(response_file_name)

 train_file = open(train_file_name, 'w+')
 response_file = open(response_file_name, 'w+')
 questions = self.httpClient.getQuestionsPerLanguage(languageCode)
 for question in questions:
 answer = question['answer']
 train_data += '__label__' + str(answer['id']) + ' '
 + question['description'] + '\n'
 response_data['__label__'
 + str(answer['id'])] = answer['description']

 train_file.write(train_data)
 response_file.write(json.dumps(response_data))
 train_file.close()
 response_file.close()
 hyper_params = {"lr": 1.0,
 "epoch": 50,

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 49

 "wordNgrams": 2,
 "minn": 3,
 "maxn": 5,
 "dim": 100}
 model = fasttext.
 train_supervised(input=train_file_name, **hyper_params)
 model_file_name = os.path.join(os.getcwd(),
 'files/models/' + languageCode + '.bin')
 createFile(model_file_name)
 model.save_model(model_file_name)

The above code describes the way the fastText trainer is initialized. The system

contains as many models as the system languages and each model is saved in the

proper .bin file. Thus, anytime a question response is needed the proper model is

loaded. As word similarity trainer all question/answer pairs are received from the

external database using an http client. In the fastText trainer case, a transformation is

necessary for each pair in order to format them in the proper representation. Thus, for

every language a train file is created which contains a label/question pair and a

response file containing a label/answer pair. Finally, the training file is used as model

trainer input for the training process.

2.6.3. Model response

In the following tables we will describe the code that both models are following

in order to respond to an input question. The code is located in fastTextClassifier.py

and in logicAdapter.py for fastText and word similarity algorithms respectively.

class MyLogicAdapter(LogicAdapter):

 def __init__(self, chatbot, **kwargs):
 super().__init__(chatbot, **kwargs)
 self.excluded_words = []

 def can_process(self, statement):
 return True

 def process(self, input_statement,additional_response_selection_parameters):
 search_results = self.search_algorithm.search(input_statement)
 # Use the input statement as the closest match
 # if no other results are found
 closest_match = next(search_results, input_statement)

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 50

 # Search for the closest match to the input statement
 for result in search_results:
 # Stop searching if a match that is close enough is found
 if result.confidence >= self.maximum_similarity_threshold:
 closest_match = result
 break

 self.chatbot.logger.info('Using "{}" as a close match to
 "{}" with a confidence of {}'.format(
 closest_match.text, input_statement.text, closest_match.confidence
))

 response_selection_parameters = {
 'search_in_response_to': closest_match.search_text,
 'exclude_text_words': self.excluded_words
 }

 alternate_response_selection_parameters = {
 'search_in_response_to': self.chatbot.storage.tagger.get_bigram_pair_string(
 input_statement.text
),
 'exclude_text_words': self.excluded_words
 }

 if additional_response_selection_parameters:
 response_selection_parameters
 .update(additional_response_selection_parameters)
 alternate_response_selection_parameters
 .update(additional_response_selection_parameters)

 # Get all statements that are in response to the closest match
 response_list = list(self.chatbot.storage
 .filter(**response_selection_parameters))

 alternate_response_list = []

 if not response_list:
 self.chatbot.logger.info('No responses found.
 Generating alternate response list.')
 alternate_response_list = list(self.chatbot.storage
 .filter(**alternate_response_selection_parameters))

 if response_list:
 self.chatbot.logger.info(
 'Selecting response from {} optimal responses.'.format(
 len(response_list)
)
)

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 51

 response = self.select_response(
 input_statement,
 response_list,
 self.chatbot.storage
)

 response.confidence = closest_match.confidence
 self.chatbot.logger.info('Response selected.
 Using "{}"'.format(response.text))
 elif alternate_response_list:
 '''
 The case where there was no responses returned for the selected match
 but a value exists for the statement the match is in response to.
 '''
 self.chatbot.logger.info(
 'Selecting response from {} optimal alternate responses.'.format(
 len(alternate_response_list)
)
)
 response = self.select_response(
 input_statement,
 alternate_response_list,
 self.chatbot.storage
)

 response.confidence = closest_match.confidence
 self.chatbot.logger.info('Alternate response selected.
 Using "{}"'.format(response.text))
 else:
 response = self.get_default_response(input_statement)

 return response

The above code describes the way the embedded chatterbot’s mechanism is used to

choose the best response. In a nutshell, using the search algorithm in the first line of

the process method, in our case the Levenstein distance, all possible matching cases

along with their confidence score are retrieved. The one with the best match score is

chosen as the closest one and the response is the answer which is in response to that

question. In case all search results have low confidence scores the process method

returns a randomly selected answer.

class FastTextClassifier:

 def __init__(self, languageCode):
 self.languageCode = languageCode
 if os.path.exists(os.path.join(os.getcwd(),
 'files/models/' + self.languageCode + '.bin')):

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 52

 self.model = fasttext.load_model(os.path.join(os.getcwd(),
 'files/models/' + self.languageCode + '.bin'))

 def clean_up_sentence(self, sentence):
 stemmer = LancasterStemmer()
 # tokenize the pattern
 sentence_words = nltk.word_tokenize(sentence)
 # stem each word
 sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
 return sentence_words

 # return bag of words array: 0 or 1
 #for each word in the bag that exists in the sentence
 def bow(self, sentence, show_details=False):
 # tokenize the pattern
 sentence_words = self.clean_up_sentence(sentence)
 # bag of words
 bag = [0] * len(self.data['words'])
 for s in sentence_words:
 for i, w in enumerate(self.data['words']):
 if w == s:
 bag[i] = 1
 if show_details:
 print("found in bag: %s" % w)

 return np.array(bag)

 def classify(self, sentence):
 sentence = self.preprocess(sentence)
 prediction = self.predict(sentence)
 utterance = self.utter(prediction)
 return utterance

 def predict(self, query):
 texts = [query]
 prediction = json.dumps(self.model.predict(texts, k=-1), cls=NumpyArrayEncoder)
 return prediction

 def utter(self, prediction):
 response_file = open(os.path.join(os.getcwd(),
 'files/response_data/' + self.languageCode + '.json'), 'r')
 responses = json.loads(response_file.read())
 labels = json.loads(prediction)[0][0]
 confidences = json.loads(prediction)[1][0]
 return [(responses[labels[0]], confidences[0])]

 def preprocess(self, sentence):
 filtered_sentence = ''
 line_token = word_tokenize(sentence)
 remove_sw = [word for word in line_token if not word in STOP_WORDS]

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 53

 filtered_sentence += ' '.join(remove_sw)
 return filtered_sentence

The above code describes the way the fastText algorithm is used to select the best

match response. The intuition behind the answer selection is that via both the

preprocess and prediction steps the algorithm tries to labelize, from the predefined

closed set of labels, the user's question. The label/questions pair with the highest

confidence score is the best matching. Thus, the algorithm’s response equals the

label/answer pair which is in response to that question.

2.6.4. Best response selection

As it is already described the chatterbot engine uses two algorithms for answer

selection to achieve better performance and accuracy. The code below shows the last

step which includes the selection of the most accurate answer, the one with the highest

confidence value, between the best algorithms’ responses.

def generateResponse(chatbotLevenshtein, chatbotFastText,
 question,languageCode, threshold):

 s1 = chatbotLevenshtein.get_response(question)
 args = {'additional_response_selection_parameters':
 {'languageCode': languageCode}}

 s2 = chatbotFastText.get_response(question, **args)

 if s1.confidence <= s2.confidence:
 response = ("FastText similarity", s2.text, s2.confidence)
 else:
 response = ("Levenshtein similarity", s1.text, s1.confidence)

 if response[2] <= float(threshold):
 return []
 return [response[1]]

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 54

It is obvious from the code above that in case all answers are lower than the threshold

score, which was experimentally selected, the system returns no answer to the user.

3. Project Code repositories

The project code is available through the repositories presented at Table 3. All the code is

available in an aggregation point at SHERPA Helper Project (SHERPA Team, 2022e) while

there has been mirroring with the git-hub account of Centre for educational Technology.

Table 3. Project code repositories

Project Module Repository URL

SHERPA Helper Project Aggregation

point
https://gitlab.com/aetma/sherpa-project

SHERPA CBR https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine

SHERPA HELPER KNOWLEDGE BASE

REPOSITORY

https://github.com/centre-for-educational-technology/sherpa-kb

https://gitlab.com/aetma/sherpa-project/sherpa-knowledge-base

SHERPA CHATBOT USER INTERFACE https://github.com/centre-for-educational-technology/sherpa-

helper

https://gitlab.com/aetma/sherpa-project/sherpa-chatbot

https://gitlab.com/aetma/sherpa-project
https://gitlab.com/aetma/sherpa-project/sherpa_inference_engine
https://github.com/centre-for-educational-technology/sherpa-kb
https://github.com/centre-for-educational-technology/sherpa-helper
https://github.com/centre-for-educational-technology/sherpa-helper

 D2.3 SELFIE Helper final release

612867-EPP-1-2019-1-EL-EPPKA3-PI-FORWARD 55

Appendix B: SHERPA Consortium Partners

The SHERPA consortium comprises five (5) partners (P) from 5 different European countries

(Greece, Finland, Cyprus, Estonia, and Italy) and 1 affiliated entity depending from P01. Table

3 includes information of the SHERPA project consortium.

Table 4. SHERPA Consortium Information

P# Full Official Name Acronym Country

P01
Advanced Educational Technologies and Mobile

Applications Lab, International Hellenic University
AETMA-IHU Greece

P02 University of Jyvaskyla JYU Finland

P03
Cyprus Pedagogical Institute, of the Ministry of Education

and Culture
CPI Cyprus

P04 Tallinn University TLU Estonia

P05
National Research Council of Italy, Institute for

Educational Technology
CNR-ITD Italy

AF01 Open Technologies Alliance (GFOSS) GFOSS Greece

